Generation properties of Maurer-Cartan invariants

نویسنده

  • Evelyne Hubert
چکیده

For the action of a Lie group, which can be given by its infinitesimal generators only, we characterize a generating set of differential invariants of bounded cardinality and show how to rewrite any other differential invariants in terms of them. Those invariants carry geometrical significance and have been used in equivalence problem in differential geometry. http://hal.inria.fr/inria-00194528 1 in ria -0 01 94 52 8, v er si on 2 10 D ec 2 00 7 Generation properties of Maurer-Cartan invariants

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo–groups, Moving Frames, and Differential Invariants

We survey recent developments in the method of moving frames for infinite-dimensional Lie pseudo-groups. These include a new, direct approach to the construction of invariant Maurer–Cartan forms and the Cartan structure equations for pseudo-groups, and new algorithms, based on constructive commutative algebra, for establishing the structure of their differential invariant algebras.

متن کامل

Moving Frames and Differential Invariants for Lie Pseudo-groups

We survey a recent extension of the moving frames method for infinite-dimensional Lie pseudo-groups. Applications include a new, direct approach to the construction of Maurer–Cartan forms and their structure equations for pseudogroups, and new algorithms, based on constructive commutative algebra, for uncovering the structure of the algebra of differential invariants for pseudogroup actions.

متن کامل

Maurer–Cartan Forms and the Structure of Lie Pseudo–Groups

This paper begins a series devoted to developing a general and practical theory of moving frames for infinite-dimensional Lie pseudo-groups. In this first, preparatory part, we present a new, direct approach to the construction of invariant Maurer–Cartan forms and the Cartan structure equations for a pseudo-group. Our approach is completely explicit and avoids reliance on the theory of exterior...

متن کامل

Moving Frames for Pseudo–Groups. I. The Maurer–Cartan Forms

This paper begins a series devoted to developing general and practical theory of moving frames for infinite-dimensional Lie pseudo-groups. In this first, preparatory part, we present a new, direct approach to the construction of invariant Maurer–Cartan forms and the Cartan structure equations for a pseudo-group. Our approach is completely explicit and avoids reliance on the theory of exterior d...

متن کامل

Recent Advances in the Theory and Application of Lie Pseudo–Groups

This paper surveys several new developments in the analysis of Lie pseudogroups and their actions on submanifolds. The main themes are direct construction of Maurer–Cartan forms and structure equations, and the use of equivariant moving frames to analyze the algebra of differential invariants and invariant differential forms, including generators, commutation relations, and syzygies.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007